

European-wide field trials for residential fuel cell micro-CHP

Impact of widespread deployment of micro-CHP in European electricity systems

Predrag Djapic, Danny Pudjianto, Goran Strbac Imperial College London

The research leading to these results has received funding from the European Union's 7th Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Undertaking Technology Initiative under Grant Agreement Number 303462

- The macroeconomics and macroenvironmental impact of widespread deployment of fuel cell micro-CHP in Europe
 - System benefit of micro-CHP
 - Impact on the capacity of primary sources and electricity production
 - Benefits in reducing carbon emissions
 - Synergies between HP and micro-CHP operation

Approach

System benefits of micro-CHP

Optimisation model for generation, and network investment problems

Generation, storage, network, demand data

Whole electricity system investment model (WeSIM)

Investment decisions: CAPEX (generation, transmission and distribution network, HP)

Operating decisions: OPEX, CO₂ emissions, generation dispatch including RES and storage, demand response, and power flows

Benefits of µCHP

- Deferred infrastructure investment and reduced operating cost are more than €6,000 per kW of installed micro-CHP
- It is relatively stable within market projection range but it is system specific
 - Higher when micro-CHP displaces output from peaking plant (e.g. 2040)
 - Lower in systems with higher RES (e.g. 2050)

Impact on the capacity of primary sources

- In the short-term,
 micro-CHP displaces
 mid-merit CCGT but in
 the long-term, with
 large amount of
 renewables, it displaces
 peaking capacity
 (OCGT)
- Capacity value of micro-CHP (combined electricity and heat led operation mode) is comparable (firm) with conventional plant assuming it provides: ancillary services and capacity for security

Impact on the electricity production

Heat led

drivers

- The output of micro-CHP displaces the output of marginal generation
- Micro-CHP produces both electricity and heat (higher energy efficiency)
- Micro-CHP is a costeffective solution of utilising gas to generate both heat and electricity at domestic level and it improves energy efficiency and reduces system consumption

Heat and electricity led

Benefit of mCHP in reducing carbon emissions

- P Depending on what primary sources have been displaced by μCHP, the benefit of μCHP in reducing carbon emissions varies
- It is likely that the benefit is larger in the short term when the grid carbon intensity is high (i.e. supply of electricity is still dominated by coal/gas-fired plant)

Carbon emissions reduction in 2030

Across Europe, the total CO2 reduction is more than 32 million tonne per year in 2030 Equivalent to 25% of Belgium's carbon emissions in 2015)

Synergies between µCHP and HP /1

Source: Delta-ee and COGEN Europe, the benefits of µCHP

Micro-CHP operates when the output of renewables is low

HP operates when the output of renewables is high

Synergies between micro-CHP and HP /2

In electricity systems with high RES penetration, a mix of HP and micro-CHP will optimise cost-efficiency and environmental outcomes.

Conclusions

- The main system benefits of micro-CHP are:
 - displacing conventional generation capacity especially peaking/backup capacity
 - substituting other heat sources such as HP in the near/mid-term
 - reducing network capacity need
 - improving efficiency of system operation and reducing OPEX
 - reducing carbon footprint
- Benefits are between 6,000 and 7,300 €/kWe of micro-CHP
 - Benefits are higher for the 2040 case but this is an exception as the generation mix in this case is not balanced.
- Heat-led operation is optimal in the short-term
- In systems with higher share of renewables or when there is a scarcity in the generation system, a combination of heat and electricity led operation is needed

To read the full report on the impact of widespread deployment of micro-CHP in European electricity systems, please follow this link: Benefits of Widespread Deployment of Fuel Cell micro-CHP in Securing and Decarbonising the Future European Electricity System